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Abstract
Objectives The traditional understanding of craniocervical alignment emphasizes specific anatomical landmarks. 
However, recent research has challenged the reliance on forward head posture as the primary diagnostic criterion for 
neck pain. An advanced relationship exists between neck pain and craniocervical alignment, which requires a deeper 
exploration of diverse postures and movement patterns using advanced techniques, such as clustering analysis. 
We aimed to explore the complex relationship between craniocervical alignment, and neck pain and to categorize 
alignment patterns in individuals with nonspecific neck pain using the K-means algorithm.

Methods This study included 229 office workers with nonspecific neck pain who applied unsupervised machine 
learning techniques. The craniocervical angles (CCA) during rest, protraction, and retraction were measured 
using two-dimensional video analysis, and neck pain severity was assessed using the Northwick Park Neck Pain 
Questionnaire (NPQ). CCA during sitting upright in a comfortable position was assessed to evaluate the resting CCA. 
The average of midpoints between repeated protraction and retraction measures was considered as the midpoint 
CCA. The K-means algorithm helped categorize participants into alignment clusters based on age, sex and CCA data.

Results We found no significant correlation between NPQ scores and CCA data, challenging the traditional 
understanding of neck pain and alignment. We observed a significant difference in age (F = 140.14, p < 0.001), NPQ 
total score (F = 115.83, p < 0.001), resting CCA (F = 79.22, p < 0.001), CCA during protraction (F = 33.98, p < 0.001), CCA 
during retraction (F = 40.40, p < 0.001), and midpoint CCA (F = 66.92, p < 0.001) among the three clusters and healthy 
controls. Cluster 1 was characterized by the lowest resting and midpoint CCA, and CCA during pro- and -retraction, 
indicating a significant forward head posture and a pattern of retraction restriction. Cluster 2, the oldest group, 
showed CCA measurements similar to healthy controls, yet reported the highest NPQ scores. Cluster 3 exhibited the 
highest CCA during protraction and retraction, suggesting a limitation in protraction movement.
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Background
While ideal craniocervical alignment has long been con-
sidered crucial for musculoskeletal health and rehabilita-
tion, recent research has challenged this traditional view, 
particularly regarding its relationship with neck pain. 
Traditionally, abnormal craniocervical alignment, often 
characterized by a forward head posture (FHP) and mea-
sured by the craniocervical angle (CCA), is thought to 
play a significant role in musculoskeletal discomfort [1, 
2]. However, a growing body of evidence suggests a more 
complex and nuanced connection between craniocervi-
cal alignment and neck pain, with some studies finding 
no clear distinction in CCA between individuals with and 
without neck pain. This has led to skepticism about the 
utility of FHP as a primary diagnostic criterion for neck 
pain [3–5], indicating that the significance of posture in 
the diagnosis and treatment of neck pain may not be as 
straightforward as previously believed.

The variations in research findings regarding neck 
pain and craniocervical alignment highlight the intricate 
nature of their relationship [6, 7]. Recent studies suggest 
that the link between these factors is not straightforward, 
with posture playing a critical role. Specifically, protrac-
tion and retraction movements have been identified as 
key factors influencing neck pain, underscoring the need 
for a more nuanced approach for diagnosis and treat-
ment [6, 8–10]. Given the frequent presence of cervical 
protraction in everyday activities and its effectiveness in 
enhancing head alignment relative to the body and reduc-
ing neck discomfort, these factors could be utilized as 
standards for classifying neck pain [8]. This perspective 
is supported by evidence indicating that posture adjust-
ments, rather than generic movement or motor control 
strategies, may offer more effective solutions for manag-
ing neck pain [9]. The influence of age and body position 
(sitting vs. standing) on neck pain further complicates 
this relationship, suggesting that these factors should be 
considered in clinical assessments and interventions [1, 
11]. Additionally, the co-occurrence of neck pain with 
headaches, whether as a secondary symptom or due to a 
primary headache condition [12], highlights the multifac-
eted nature of neck pain and its management [11]. This 
refined focus on posture and specific movements aligns 
with the latest research, suggesting a tailored treatment 
approach that accounts for individual differences in cra-
niocervical alignment and its impact on neck pain.

Despite substantial progress in understanding move-
ment and posture patterns in individuals with low back 
pain [13–15], similar research on neck pain remains 
scarce. Several researchers have reported cases where 
neck pain has been classified based on movement pat-
terns and motor control [8, 9]. Sahrmann (2010) clearly 
distinguished the characteristic cervical alignment 
observed in individuals with cervical flexion and exten-
sion syndromes [9]. Characteristic alignment issues 
among individuals with cervical extension syndrome 
include increased thoracic kyphosis and FHP, while those 
among individuals with cervical flexion syndrome include 
decreased thoracic kyphosis and inward cervical curves 
[9]. Comerford and Mottram (2012) reported that uncon-
trolled flexion or extension movements can be confirmed 
in the cervical spine on an individual basis [8]. However, 
much of the literature has only studied one FHP pattern 
and not the various postures and movements linked to 
neck pain. To address these gaps in knowledge and move 
beyond standardized therapeutic interventions for neck 
pain, it is essential to identify and classify the diverse pat-
terns of neck posture and movement among individuals 
with neck pain.

Clustering analysis can helps classify subjects into clus-
ters using an unsupervised machine learning algorithm 
[16]. This study used unsupervised machine learning 
(K-means algorithm) to classify craniocervical alignment 
patterns based on CCA data in individuals with nonspe-
cific neck pain. The objective of this study was to inves-
tigate the association between neck pain and CCA data, 
categorize craniocervical alignment patterns in individu-
als with NSNP, and compare CCA data between these 
patterns and healthy controls.

Methods
Study design and participants
This multicenter, retrospective, observational study was 
conducted at healthcare centers in 11 public service 
offices. CCA data of office workers (OWs) obtained from 
musculoskeletal screening tests for preventing indus-
trial accidents were used to examine the risk factors for 
musculoskeletal disorders in 11 public service offices 
from April 2022 to February 2023. The OW’s data gener-
ated from musculoskeletal screening tests for preventing 
industrial accidents were used by visiting a musculoskel-
etal health care program in 11 public service offices. The 
requirement for informed consent was waived by the 

Discussion Analyzing 229 office workers, three distinct alignment patterns were identified, each with unique 
postural characteristics; therefore, treatments addressing posture should be individualized and not generalized across 
the population.

Keywords Craniocervical alignment, Forward head posture, Neck pain, Unsupervised machine learning, K-means 
algorithm



Page 3 of 10Hwang et al. BMC Musculoskeletal Disorders          (2024) 25:376 

Institutional Review Board of Yonsei University Mirae 
Campus before analysis, as the study used data already 
acquired by musculoskeletal screening tests to pre-
vent industrial accidents. Personal information was not 
obtained to protect the anonymity of the participants. A 
total of 57 OWs without NSNP and 252 OWs with NSNP 
were screened for eligibility. OWs who had been using 
computers in the office for more than two years were 
screened. Individuals with NSNP were included if they 
(1) reported neck pain intensity over the last month as 
greater than 3 of 10 on a Numerical Rating Scale (NRS) 
[17] and (2) had a history of neck pain for more than one 
month. Individuals without NSNP were eligible if they 
had no history and experience of neck pain in the last 
three months. The exclusion criteria for OWs with and 
without NSNP were diagnosis of tension-type headache, 
hypertension, rheumatologic conditions, or a history of 
spinal surgery.

Craniocervical angle measurements using two-
dimensional video analysis
A smartphone equipped with video recording capabili-
ties (4  K resolution, 3840 × 2160 pixels at 60 frames per 
second) was secured on a tripod positioned 100 cm from 
the side of the chair, with its height adjusted to align with 
the level of the participant’s tragus of the ear. Two mark-
ers with diameters of 20 mm were attached to the tragus 
of the ear and spinous process of C7. CCAs during peri-
ods of rest, protraction, and retraction were determined 
by monitoring markers positioned at the lateral canthus 
of the eye, as well as two additional markers located at 
the tragus of the ear and spinous process of C7. Python 
(version 3.6.15; Python Software Foundation) was used to 

track the markers during protraction and retraction, and 
OpenCV was used as the main computer vision library. 
The tracking algorithm uses the Channel and Spatial Reli-
ability Tracking tracker, which reportedly has the most 
reliable and robust tracking capabilities [18]. The reliabil-
ity and validity of CCA measurements using two-dimen-
sional video analysis have been a subject of research to 
ensure the accuracy and consistency of assessments in 
clinical and research settings [19]. Previous study for 
reliability and validity of CCA measurements using two-
dimensional video analysis suggested that intraclass cor-
relation coefficients (ICCs) for intrarater and interrater 
reliability ranging from 0.98 to 1.00, indicating excellent 
reliability. Standard errors of measurement and minimal 
detectable change values ranged from 0.4° to 0.8° and 
0.8° to 2.3°, respectively, suggesting high precision in the 
measurement of CCA [19].

CCAs during rest, protraction, and retraction were 
measured in the sitting position to analyze the resting 
CCA, midpoint CCA, and difference in CCA between 
the midpoint and resting CCA (dCCAMR). The midpoint 
CCA was in the middle position between protraction and 
retraction for each participant. (Fig.  1). Protraction and 
retraction were performed consecutively, and each pro-
cedure was repeated three times to measure the midpoint 
CCA. In resting CCA measurements, a decrease in CCA 
indicates greater FHP. During protraction and retraction, 
a smaller CCA indicates increased protraction, whereasa 
larger angle indicates increased retraction.

CCA was measured between the horizontal line pass-
ing through the marker on the spinous process of C7 
and the line connecting the two markers on the tragus of 
the ear and the spinous process of C7 (Fig. 1) [20]. The 
ends of the protraction and retraction were defined as 
the parts that moved the most in a positive or negative 
direction from the typical sitting posture on the horizon-
tal axis.

Participants were seated on an adjustable stool with-
out back support, positioned such that the height aligned 
with their popliteal crease, ensuring a 90-degree angle at 
both the hips and knees, with feet in a neutral, plantar-
grade position. Initially, the subjects were instructed to 
adopt a comfortable and habitual sitting posture, refrain 
from adjusting their position on the seat, breathe nor-
mally, and look forward. This initial posture was used 
to measure the resting CCA, and was established as the 
baseline for subsequent protraction and retraction move-
ments. To familiarize themselves with the procedure, 
the participants performed each movement three times 
under guidance. For the protraction phase, they were ver-
bally directed to “extend your head forward as much as 
you can, then return to the baseline posture.” Similarly, 
for retraction, the instruction was to “pull your head back 
as far as possible, then return to the starting position”. 

Fig. 1 Measurement of resting CCA, CCA during protraction and retrac-
tion, and midpoint CCA
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Both protraction and retraction movements were exe-
cuted in sequence, and each action was repeated three 
times to ensure consistency and measurement accuracy.

Assessing neck pain-related disability Northwick Park Neck 
Pain Questionnaire
The Northwick Park Neck Pain Questionnaire (NPQ) 
helps assess neck pain intensity and resulting disability 
[21]. NPQ includes nine items. Each item consists of five 
responses. The questions were associated with neck pain 
intensity, needles/numbness, symptom duration, and var-
ious physical activities [21], with scores ranging from 0 
to 4 for each question. The maximum possible total score 
for the test was 36, calculated as a percentage (%). Higher 
scores indicate greater neck pain intensity and disability.

Unsupervised machine learning modeling
Machine learning modeling and statistical analysis were 
performed using Orange data mining software (Orange 
3.3.0, Ljubljana, Slovenia) and Python (Version 3.6.15; 
Python Software Foundation, Wilmington, DE, USA).

Pre-processing and missing data handling
Three numeric features are assessed in this study. Out of 
a total score of 10, scores of 3 or above on the NRS for 
neck pain and meeting the inclusion criteria were catego-
rized as having NSNP, while scores below 3 and no his-
tory and experience of neck pain in the last three months 
were categorized as not having NSNP. Exploratory data 
analysis was performed to detect missing data. Imputa-
tion for handling missing data was performed by elimi-
nating instances with unknown values. Boxplots were 
used to assess the distribution of each variable and iden-
tify outliers. Outliers were addressed by applying a local 
outlier factor (contamination = 10%, neighbors = 20, Met-
ric = Euclidean). This process is essential because outli-
ers can significantly affect the accuracy of the learning 
model.

Correlations between NPQ and CCA data
In the entire dataset (n = 286), which included both indi-
viduals with (n = 229) and without (n = 57) neck pain, we 
performed Pearson’s correlation coefficient analyses to 
explore the relationships between NPQ scores and the 
CCA data, which encompassed resting CCA, CCA dur-
ing protraction, CCA during retraction, midpoint CCA, 
and dCCAMR measurements.

Unsupervised machine learning: K-means algorithm
A craniocervical alignment pattern clustering model was 
developed using the k-means algorithm as an unsuper-
vised machine learning technique. Seven features (age, 
sex, resting CCA, CCA during protraction, CCA during 
retraction, midpoint CCA, and dCCAMR) were used 
for unsupervised machine learning. Because k-means 
clustering requires pre-determination of the number of 
clusters before model construction, the number of clus-
ters was set between 2 and 10. The initialization was 
performed randomly. The number of reruns and the 
maximum iterations were set to 10 and 300, respectively.

Determining optimal number of clusters: silhouette method
In partitioning clustering, determining the appropriate 
number of clusters, denoted as “h,” can be challenging. 
Selecting the optimal number of clusters for a given data-
set is challenging. One common strategy for finding the 
optimal number of clusters is calculating the average sil-
houette score among the criteria used in the optimization 
process [22]. The silhouette method was used to deter-
mine the similarity within the cluster of each data point 
and the distance between other clusters [22, 23]. The 
silhouette scores range from 0 to 1, with higher scores 
indicating better cluster categorization and lower scores 
indicating poorer cluster categorization [23].

Comparisons of NPQ total score and CCA data between 
clusters and healthy control
Age, NPQ total score, and CCA data (resting CCA, CCA 
during protraction, CCA during retraction, midpoint 
CCA, and dCCAMR) between clusters and healthy con-
trols were compared using one-way analysis of variance. 
A p-value of 0.05 was considered statistically signifi-
cant. For post-hoc testing, the Bonferroni correction was 
applied according to the number of comparisons.

Results
OWs characteristics
Among the 252 OWs with NSNP, 23 were excluded as 
outliers to improve cluster classification. The unsuper-
vised machine learning clustering included 229 OWs (14 
men and 215 women). The means and standard devia-
tions of all variables are presented in Table 1.

Table 1 Mean (standard deviation) of baseline characteristics in 
OWs with and without NSNP
Variables Without 

NSNSPa
With NSNP p

Sex (M/F) 14/43 18/233
Age 36.3 ± 7.1 37.6 ± 6.4 0.231
NRSb 0.32 ± 0.70 6.27 ± 1.40 0.000
NPQc total score (%) 16.33 ± 8.92 46.49 ± 11.59 0.000
CCAd during protraction 32.24 ± 7.21 32.69 ± 7.53 0.680
CCA during retraction 56.94 ± 6.08 56.00 ± 8.05 0.333
Resting CCA 50.08 ± 5.82 49.36 ± 6.36 0.425
Midpoint CCA 44.59 ± 5.71 44.36 ± 6.50 0.779
Difference of CCA between 
midpoint and rest

-5.49 ± 3.91 -5.02 ± 3.66 0.425

aNSNP non-specific neck pain, bNRS numerical rating scale, cNPQ Northwick Park 
Neck Pain Questionnaire, dCCA craniocervical angle
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Correlations between NPQ and CCA data
There were no significant correlations between the NPQ 
total score and resting CCA (r = 0.010, p = 0.863, 95% 
CI=[-0.106, 0.126]), CCA during protraction (r=-0.028, 
p = 0.642, 95% CI=[-0.143, 0.089]), CCA during retraction 
(r = 0.061, p = 0.303, 95% CI=[-0.055, 0.176]), midpoint 
CCA (r=-0.038, p = 0.519, 95% CI=[-0.154, 0.078]), and 
dCCAMR (r=-0.021, p = 0.729, 95% CI=[-0.136, 0.096]).

Number of clusters
The outcomes of the silhouette method employed with 
the k-means clustering algorithm are shown in Fig.  2. 
The silhouette score was the highest when the num-
ber of clusters was 3 (silhouette score = 0.292), from 2 
to 10. Consequently, the optimal number of clusters for 
k-means clustering was 3.

Comparisons of NPQ total score and CCA data between 
clusters and healthy control
Table  2; Figs.  3 and 4 present the three craniocervical 
alignment pattern clusters identified using k-means algo-
rithm clustering based on age, sex, resting CCA, CCA 
during protraction, CCA during retraction, midpoint 
CCA, and dCCAMR. Figure 3 was expressed using mul-
tilinear projection as a type of data visualization used to 
represent high-dimensional data in two dimensions. The 
longer the line, the greater the change in the variables 
between the compared states. The lines can be inter-
preted as vectors showing the direction and magnitude 
of change in the data space, which helps in visualizing 
complex relationships among multiple variables. Figure 4 
shows the scatter plot for OWs with NSNP classified clus-
ters and healthy controls between resting CCA, midpoint 
CCA, dCCAMR and NPQ total score. The distribution 
of data across clusters can be observed through the vio-
lin plot presented in Fig. 5. Among 229 OWs with NSNP, 
80, 44, and 104 OWs were classified as clusters 1, 2, and 
3, respectively. Significant differences in age (F = 140.14, 
p < 0.001), NPQ total score (F = 115.83, p < 0.001), rest-
ing CCA (F = 79.22, p < 0.001), CCA during protraction 
(F = 33.98, p < 0.001), CCA during retraction (F = 40.40, 

Table 2 Comparisons of CCA data between clusters and healthy controls
Features Cluster 1 (N = 81) Cluster 2 (N = 44) Cluster3 (N = 104) Healthy controls (N = 57) p
Sex M = 8 / F = 73 M = 2 / F = 42 M = 8 / F = 96 M = 14 / F = 43 -
Age 35.21 ± 3.62 50.64 ± 5.01* 35.23 ± 3.56 35.74 ± 6.41 0.000
NPQa total score (%) 45.80 ± 11.56* 50.82 ± 13.25* 45.35 ± 10.54* 16.32 ± 8.92 0.000
Resting CCAb 44.47 ± 3.35* 47.84 ± 4.35 54.21 ± 3.52* 49.44 ± 6.27 0.000
Midpoint CCA 39.59 ± 3.71* 42.54 ± 4.64 48.99 ± 3.78* 43.83 ± 6.43 0.000
CCA during protraction 27.81 ± 5.66* 31.69 ± 5.40 37.03 ± 5.81* 31.33 ± 8.04 0.000
CCA during retraction 51.37 ± 6.24* 53.39 ± 6.17 60.94 ± 5.70* 56.33 ± 6.48 0.000
Difference of CCA between midpoint and rest -4.89 ± 3.30 -5.30 ± 3.12 -5.22 ± 3.06 -5.61 ± 3.85 0.654
aNPQ Northwick Park Neck Pain Questionnaire, bCCA craniocervical angle

*p < 0.001 (comparison between cluster vs. healthy control in post-hoc analysis)

Fig. 3 Multi-axis linear projection for OWs with NSNP classified clusters 
and healthy controls (the greater the dot size, the greater the resting 
CCA; blue dot = cluster 1; red dot = cluster 2; green dot = cluster 3; orange 
dot = healthy controls)

 

Fig. 2 Silhouette scores according to number of clusters
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p < 0.001), and midpoint CCA (F = 66.92, p < 0.001) were 
observed among the three clusters and healthy controls. 
However, there was no significant difference in dCCAMR 
(F = 0.542, p = 0.654).

For post hoc analysis of age, there was a significant 
difference in age between groups Cluster 1 and Clus-
ter 2 (p < 0.001), with a mean difference of 15.42, sug-
gesting that group Cluster 2 was older than group 
Cluster 1 (p < 0.001). Similarly, a significant difference 
was observed between Cluster 2 and healthy controls 
(p < 0.001), with Cluster 2 being older. However, no sig-
nificant age differences were found between groups Clus-
ter 1 and Cluster 3, or Cluster 1 and healthy controls, as 
well as between Cluster 3 and healthy controls, indicating 
more homogeneity in age within these groups. For post 
hoc analysis of NPQ total score, significant differences 
were observed in NPQT scores between groups Cluster 
1 and healthy controls (p < 0.001), Cluster 2 and Cluster 
3 (p < 0.001), Cluster 2 and healthy controls (p < 0.001), 
and Cluster 3 and healthy controls (p < 0.001), suggest-
ing variations in neck pain experiences across different 
groups. No significant difference was observed between 
groups Cluster 1 and Cluster 2, or Cluster 1 and Cluster 
3. For both resting CCA and midpoint CCA variables, all 
group comparisons except Cluster 2 and healthy controls 
for resting CCA and midpoint CCA showed significant 
differences (p < 0.001). For CCA during retraction, sig-
nificant differences were notably present between groups 
Cluster 1 and Cluster 3 (p < 0.001), Cluster 1 and healthy 
controls (p < 0.001), Cluster 2 and Cluster 3 (p < 0.001), 
and Cluster 3 and healthy controls (p < 0.001). Similarly, 

CCA during protraction showed significant variability, 
with differences observed between groups Cluster 1 and 
Cluster 2 (p < 0.001), Cluster 1 and Cluster 3 (p < 0.001), 
Cluster 1 and healthy controls (p < 0.001), Cluster 2 and 
Cluster 3 (p < 0.001), and Cluster 3 and healthy controls 
(p < 0.001).

Discussion
Physical therapists and healthcare practitioners fre-
quently conduct craniocervical alignment analyses as 
part of their screening tests, which can provide valuable 
insights into the presence of NSNP [5, 24]. Recent stud-
ies, aligning with our results, have shown weak, non-sig-
nificant correlations between CCA and clinical measures 
of pain and disability, challenging the historical empha-
sis on FHP as a primary cause of neck pain [3–5]. In line 
with these recent studies, our study could not confirm a 
significant correlation between neck pain and craniocer-
vical alignment and movement, or significant differences 
in craniocervical alignment and movement between indi-
viduals with and without NSNP. These results suggest a 
non-linear relationship between neck pain and craniocer-
vical alignment, indicating that clinical assessment strat-
egies and the development of targeted interventions may 
be crucial for NSNP. The identification of three distinct 
craniocervical alignment patterns among individuals 
with NSNP challenges the conventional understanding 
that greater FHP is primarily associated with neck pain 
severity. Our findings could suggests the variability in 
neck pain etiology and the limitations of a one-size-fits-
all approach for diagnosis and treatment. We identified 

Fig. 4 Scatter plot for OWs with NSNP classified clusters and healthy controls. A: between resting CCA and NPQ total score, B: between midpoint CCA 
and NPQ total score, C: between difference of CCA between midpoint and rest and NPQ total score (the greater the dot size, the greater the resting CCA, 
blue dot = cluster 1, red dot = cluster 2, green dot = cluster 3, orange dot = healthy controls)
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three distinct craniocervical alignment patterns among 
individuals with NSNP, each with unique characteristics 
and implications. The present study could indicat the 
need for a more personalized approach to treatment for 
NSNP, taking into account the specific alignment pat-
terns and movement restrictions of each individual.

Individuals classified as Cluster 1 accounted for 35.4% 
of 229 OWs with the NSNP. The resting and midpoint 
CCAs in Cluster 1 were significantly lower than those 
in the healthy controls. Cluster 1 had the lowest resting 
CCA, i.e., the FHP increased the most among these cases. 
Cluster 1 exhibited the least CCA during retraction 
within the three clusters and healthy controls. Decreased 

cervical retraction movement could be attributed to 
tightness of the sternocleidomastoid and posterior neck 
muscles, insufficient mobility of the cervical spine, and 
weakness of the deep neck flexors as cervical stabiliz-
ers [25, 26]. FHP affects the cervical spine by imposing 
increased mechanical load, altering cervical mobility, 
and leading to overuse of muscles such as the scapular 
elevators, sternocleidomastoid, and upper trapezius [27, 
28]. Thus, OWs with NSNP, including those in Cluster 
1, could be classified as exhibiting a pattern indicative of 
restriction of retraction movement and increasing FHP.

Of the 229 OWs with NSNP, individuals classified 
as belonging to Cluster 2 comprised 19.2% of the total. 

Fig. 5 Violin plot for comparisons of CCA data between clusters and healthy control. A: NPQ total score, B: resting CCA, C: midpoint CCA, D: difference of 
CCA between midpoint and rest, E: Age
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Cluster 2 individuals were characterized by being the old-
est among the clusters, with an age significantly higher 
than that of Cluster 1, Cluster 3, and healthy controls. 
Despite this age difference, Cluster 2’s CCA data (includ-
ing resting CCA, CCA during protraction, and CCA dur-
ing retraction) showed no significant differences from 
healthy controls. This observation suggests that cervical 
posture and movement may not be directly related to the 
NSNP in this particular cluster. This aligns with some 
studies suggesting a complex and not always straightfor-
ward relationship between cervical posture, movement, 
and NSNP. These findings suggest that the etiology of 
NSNP, particularly in Cluster 2, might not be primar-
ily driven by observable postural deviations or specific 
movement patterns but rather by a complex interaction 
of factors, including age-related changes, muscle func-
tion, and perhaps other not yet fully understood biome-
chanical or physiological factors [5, 29, 30]. The lack of 
significant difference of CCA data between Cluster 2 and 
healthy controls underscores the imperative for a com-
prehensive diagnostic and therapeutic strategy for NSNP. 
This strategy should extend beyond mere assessment of 
physical posture and movement patterns to encompass 
a variety of potential contributing factors. Such factors 
include, but are not limited to, psychological stress-
ors, muscular endurance capabilities, and the influence 
of aging on musculoskeletal functionality [31, 32]. This 
multifaceted approach is essential for a more nuanced 
understanding and effective management of NSNP. Fur-
thermore, Cluster 2 exhibited the highest NPQ total 
scores statistically, despite not showing significant differ-
ences in posture or movement compared to healthy con-
trols. Given the advanced age of this cluster, age-related 
physiological changes, decreased muscular endurance, 
or psychological factors such as the perception of pain 
and disability may play a more significant role in the 
manifestation of NSNP in these individuals [31]. Alter-
natively, it is conceivable that individuals experienc-
ing pain due to incorrect posture or movements might 
adaptively modify their posture and movement patterns 
to avoid pain, thereby aligning closer to those observed 
in healthy controls [33]. The concept of pain avoidance 
through adaptive postural adjustment is supported by 
the pain adaptation model, which posits that pain can 
lead to changes in motor control strategies as a protective 
mechanism to minimize discomfort and prevent further 
injury [33, 34]. This theory is further corroborated by 
studies suggesting that individuals with chronic pain may 
develop compensatory movement patterns to mitigate 
pain, potentially masking underlying postural deviations 
or movement dysfunctions when compared to asymp-
tomatic individuals [35, 36]. These findings could sug-
gest the importance of a nuanced approach to evaluating 
and treating NSNP, considering not only the mechanical 

aspects of posture and movement but also the individu-
al’s adaptive responses to pain.

Among 229 OWs with NSNP, individuals classified 
as Cluster 3 accounted for 45.4%. The resting and mid-
point CCAs in Cluster 3 were significantly greater than 
those in the healthy controls. Cluster 3 showed the great-
est CCA during protraction (i.e., protraction decreased) 
among the three clusters. A previous study reported 
that retraction showed a significantly greater range in 
the neck pain group than in the healthy group [37]. This 
may be because excessive extension movements occur 
in a specific segment of the lower cervical spine, result-
ing in retraction rather than protraction. Furthermore, 
limitations in protraction movements might have arisen 
from concerns about the potential pain associated with 
protraction. Retractions can potentially facilitate cervi-
cal root decompression and reduce radicular pain, which 
could influence the preference for retraction over pro-
traction in certain cases [38]. Thus, OWs with NSNP, 
including Cluster 3, could be classified as a pattern for 
restricting protraction movement.

The clinical implications of our findings are significant, 
particularly in the context of personalized assessments 
and treatment strategies for NSNP. The identification of 
specific craniocervical alignment patterns among indi-
viduals with NSNP suggests that clinicians should con-
sider these patterns when developing treatment plans. 
For instance, individuals categorized within Cluster 1, 
which is characterized by a pattern of restricted retrac-
tion movement, may benefit more from targeted exer-
cises designed to improve lower cervical extension and 
upper cervical flexion mobility. This recommendation 
is supported by studies emphasizing the effectiveness 
of customized physical therapy interventions based on 
individual posture analysis [11, 37]. For Cluster 3, which 
exhibits a pattern of restricted protraction movement, 
interventions could prioritize exercises that enhance cer-
vical protraction mobility and manage excessive retrac-
tion, aligning with evidence suggesting the benefits of 
specific movement strategies in treating neck pain [8, 
9]. Thus, our study underscores the importance of inte-
grating detailed posture and movement pattern analy-
sis into clinical practice, advocating for a model of care 
that is responsive to the individual characteristics of each 
patient with NSNP.

Although our study yielded valuable insights, it was not 
without its limitations. First, the study population was 
restricted to OWs, which hinders the generalizability of 
the findings to a broader population. Further research 
with larger and more diverse sample sizes is needed to 
extend the applicability of these results. Second, the study 
was cross-sectional. As a result, we could not establish 
causal relationships; we could only observe associations 
and correlations among the variables at a specific time. 
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Longitudinal studies are required to explore the cause-
and-effect relationships more definitively. The potential 
influence of these alignment and movement patterns 
on treatment outcomes must be explored. Furthermore, 
longitudinal studies would help to establish causal rela-
tionships between these patterns and the development 
or persistence of neck pain. Future studies should inves-
tigate whether targeted interventions tailored to specific 
alignment patterns can improve the clinical outcomes. 
Third, the k-means algorithm we chose might not nec-
essarily be the best-performing model given the diverse 
machine learning algorithms available. Fourth, our analy-
sis of posture was confined to a single plane, overlooking 
the three-dimensional nature of posture. This limitation 
restricts our understanding of the complex spatial orien-
tation of the cervical spine and its contribution to neck 
pain. Future research should incorporate multi-planar 
analyses to capture the full scope of postural dynamics. 
Fifth, the study did not differentiate between mobility 
and function of the upper versus the mid/lower cervical 
spine, which are known to vary among individuals. Our 
measurement of only one angle in the craniocervical 
alignment failed to identify where movement predomi-
nantly occurred within the cervical spine of an individual 
participant. For instance, it remains unclear whether the 
upper cervical spine extendeds more than the lower cer-
vical spine during protraction. This oversight suggests 
that there could be significant variations in how par-
ticipants positioned each region of their cervical spine 
across the measured postures.

Conclusion
This study underscores the complexity of the association 
between craniocervical alignment and neck pain. We 
identified distinct craniocervical alignment patterns in 
individuals with neck pain by applying the k-means algo-
rithm as an unsupervised machine learning technique. 
These findings open new avenues for personalized assess-
ment and treatment, potentially revolutionizing the man-
agement of NSNP. Further research is needed to validate 
and expand these findings, ultimately leading to more 
effective interventions in individuals with neck pain.
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